All living things, ourselves included, turn genes on and off in a similar way, by making switch-like proteins called transcription factors. And as scientists have identified more of these, they’ve discovered something remarkable: They form a chain of command. The job of some transcription factors is to switch others on and off, and they in turn are controlled by other transcription factors. Even a seemingly simple microbe like E. coli has an impressive hierarchy. Just nine genes rule over about half of the 4,000-odd genes in E. coli.E. coli’s network allows it to respond quickly to the challenges it meets, from starvation to heat to the loss of oxygen. It can rapidly reorganize itself, switching on hundreds of genes and switching off hundreds of others. What makes this network all the more impressive are the feedback loops that keep it from spinning out of control. When one gene switches on, for example, it may make a protein that shuts down the gene that switched it on in the first place.
Yet even as scientists uncover this network, they discover yet another mystery. In the latest issue of Nature, scientists reported an experiment in which they wreaked havoc with E. coli’s network. They randomly added new links between the transcription factors at the top of the microbe’s hierarchy. Now a transcription factor could turn on another one that it never had before. The scientists randomly rewired the network in 598 different ways and then stepped back to see what happened to the bacteria.
You might expect that they all died. After all, if you were to pop open the back of an iPod and start linking its components together in random ways, you’d expect it to crash. But that’s not what happened.
About 95 percent of the rewired bacteria did just fine with their new networks. They went on with their lives, feeding, growing and dividing. Some even performed better than microbes with the original wiring, under some conditions.
(HT Curious Cat)
No comments:
Post a Comment