Here's more:Dr. Ioannidis is an epidemiologist who studies research methods at the University of Ioannina School of Medicine in Greece and Tufts University in Medford, Mass. In a series of influential analytical reports, he has documented how, in thousands of peer-reviewed research papers published every year, there may be so much less than meets the eye.
These flawed findings, for the most part, stem not from fraud or formal misconduct, but from more mundane misbehavior: miscalculation, poor study design or self-serving data analysis. "There is an increasing concern that in modern research, false findings may be the majority or even the vast majority of published research claims," Dr. Ioannidis said. "A new claim about a research finding is more likely to be false than true." . . .
Statistically speaking, science suffers from an excess of significance. Overeager researchers often tinker too much with the statistical variables of their analysis to coax any meaningful insight from their data sets. "People are messing around with the data to find anything that seems significant, to show they have found something that is new and unusual," Dr. Ioannidis said.
Ioannides attributes this to "messing around with the data to find anything that seems significant," and that's probably part of it. The other part is that, even if all statistics are done according to plan, the estimates that survive significance testing will tend to be large--this is what we call "Type M error." See here for more discussion.I wish I could say economics had a better track record...
(HT The Volokh Conspiracy)
No comments:
Post a Comment